Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Endocrinology and Metabolism ; : 146-156, 2021.
Article in English | WPRIM | ID: wpr-874539

ABSTRACT

Background@#The microencapsulation is an ideal solution to overcome immune rejection without immunosuppressive treatment. Poor biocompatibility and small molecular antigens secreted from encapsulated islets induce fibrosis infiltration. Therefore, the aims of this study were to improve the biocompatibility of microcapsules by dexamethasone coating and to verify its effect after xenogeneic transplantation in a streptozotocin-induced diabetes mice. @*Methods@#Dexamethasone 21-phosphate (Dexa) was dissolved in 1% chitosan and was cross-linked with the alginate microcapsule surface. Insulin secretion and viability assays were performed 14 days after microencapsulation. Dexa-containing chitosan-coated alginate (Dexa-chitosan) or alginate microencapsulated porcine islets were transplanted into diabetic mice. The fibrosis infiltration score was calculated from the harvested microcapsules. The harvested microcapsules were stained with trichrome and for insulin and macrophages. @*Results@#No significant differences in glucose-stimulated insulin secretion and islet viability were noted among naked, alginate, and Dexa-chitosan microencapsulated islets. After transplantation of microencapsulated porcine islets, nonfasting blood glucose were normalized in both the Dexa-chitosan and alginate groups until 231 days. The average glucose after transplantation were lower in the Dexa-chitosan group than the alginate group. Pericapsular fibrosis and inflammatory cell infiltration of microcapsules were significantly reduced in Dexa-chitosan compared with alginate microcapsules. Dithizone and insulin were positive in Dexa-chitosan capsules. Although fibrosis and macrophage infiltration was noted on the surface, some alginate microcapsules were stained with insulin. @*Conclusion@#Dexa coating on microcapsules significantly suppressed the fibrotic reaction on the capsule surface after transplantation of xenogenic islets containing microcapsules without any harmful effects on the function and survival of the islets.

2.
Journal of Korean Medical Science ; : 991-994, 2015.
Article in English | WPRIM | ID: wpr-70181

ABSTRACT

Pancreatic islet transplantation is a physiologically advantageous and minimally invasive procedure for the treatment of type 1 diabetes mellitus. Here, we describe the first reported case of successful allogeneic islet transplantation alone, using single-donor, marginal-dose islets in a Korean patient. A 59-yr-old patient with type 1 diabetes mellitus, who suffered from recurrent severe hypoglycemia, received 4,163 islet equivalents/kg from a single brain-death donor. Isolated islets were infused intraportally without any complications. The immunosuppressive regimen was based on the Edmonton protocol, but the maintenance dosage was reduced because of mucositis and leukopenia. Although insulin independence was not achieved, the patient showed stabilized blood glucose concentration, reduced insulin dosage and reversal of hypoglycemic unawareness, even with marginal dose of islets and reduced immunosuppressant. Islet transplantation may successfully improve endogenous insulin production and glycemic stability in subjects with type 1 diabetes mellitus.


Subject(s)
Female , Humans , Middle Aged , Blood Glucose/analysis , Diabetes Mellitus, Type 1/surgery , Hypoglycemia/surgery , Immunosuppression Therapy/methods , Immunosuppressive Agents/therapeutic use , Islets of Langerhans/physiology , Islets of Langerhans Transplantation/methods , Republic of Korea , Tissue Donors
3.
Diabetes & Metabolism Journal ; : 475-483, 2013.
Article in English | WPRIM | ID: wpr-31442

ABSTRACT

BACKGROUND: We aimed to quantify stress-induced hyperglycemia and differentiate the glucose response between normal animals and those with diabetes. We also examined the pattern in glucose fluctuation induced by stress according to type of diabetes. METHODS: To load psychological stress on animal models, we used a predator stress model by exposing rats to a cat for 60 minutes and measured glucose level from the beginning to the end of the test to monitor glucose fluctuation. We induced type 1 diabetes model (T1D) for ten Sprague-Dawley rats using streptozotocin and used five Otsuka Long-Evans Tokushima Fatty rats as obese type 2 diabetes model (OT2D) and 10 Goto-Kakizaki rats as nonobese type 2 diabetes model (NOT2D). We performed the stress loading test in both the normal and diabetic states and compared patterns of glucose fluctuation among the three models. We classified the pattern of glucose fluctuation into A, B, and C types according to speed of change in glucose level. RESULTS: Increase in glucose, total amount of hyperglycemic exposure, time of stress-induced hyperglycemia, and speed of glucose increase were significantly increased in all models compared to the normal state. While the early increase in glucose after exposure to stress was higher in T1D and NOT2D, it was slower in OT2D. The rate of speed of the decrease in glucose level was highest in NOT2D and lowest in OT2D. CONCLUSION: The diabetic state was more vulnerable to stress compared to the normal state in all models, and the pattern of glucose fluctuation differed among the three types of diabetes. The study provides basic evidence for stress-induced hyperglycemia patterns and characteristics used for the management of diabetes patients.


Subject(s)
Animals , Cats , Humans , Rats , Glucose , Hyperglycemia , Models, Animal , Rats, Sprague-Dawley , Streptozocin , Stress, Psychological
4.
Diabetes & Metabolism Journal ; : 119-129, 2011.
Article in English | WPRIM | ID: wpr-187625

ABSTRACT

BACKGROUND: A limitation in the number of insulin-producing pancreatic beta-cells is a special feature of diabetes. The identification of alternative sources for the induction of insulin-producing surrogate beta-cells is a matter of profound importance. PDX-1/VP16, BETA2/NeuroD, and MafA overexpression have been shown to influence the differentiation and proliferation of pancreatic stem cells. However, few studies have been conducted using adult animal pancreatic stem cells. METHODS: Adult pig pancreatic cells were prepared from the non-endocrine fraction of adult pig pancreata. Porcine neonatal pancreas cell clusters (NPCCs) were prepared from neonatal pigs aged 1-2 days. The dispersed pancreatic cells were infected with PDX-1/VP16, BETA2/NeuroD, and MafA adenoviruses. After infection, these cells were transplanted under the kidney capsules of normoglycemic nude mice. RESULTS: The adenovirus-mediated overexpression of PDX-1, BETA2/NeuroD and MafA induced insulin gene expression in NPCCs, but not in adult pig pancreatic cells. Immunocytochemistry revealed that the number of insulin-positive cells in NPCCs and adult pig pancreatic cells was approximately 2.6- and 1.1-fold greater than those in the green fluorescent protein control group, respectively. At four weeks after transplantation, the relative volume of insulin-positive cells in the grafts increased in the NPCCs, but not in the adult porcine pancreatic cells. CONCLUSION: These data indicate that PDX-1, BETA2/NeuroD, and MafA facilitate the beta-cell differentiation of NPCCs, but not adult pig pancreatic cells. Therefore PDX-1, BETA2/NeuroD, and MafA-induced NPCCs can be considered good sources for the induction of pancreatic beta-cells, and may also have some utility in the treatment of diabetes.


Subject(s)
Adult , Aged , Animals , Humans , Adenoviridae , Capsules , Gene Expression , Immunohistochemistry , Insulin , Kidney , Pancreas , Stem Cells , Swine , Transplants
5.
Korean Diabetes Journal ; : 102-111, 2008.
Article in Korean | WPRIM | ID: wpr-61110

ABSTRACT

BACKGROUND: Insulin receptor substrate 2 (IRS-2) is a key regulator of beta cell proliferation and apoptosis. This study was aimed to investigate effect of the glucolipotoxicity on apoptosis in INS-1 cell, and the effect of Exendin-4, a GLP-1 receptor agonist, on IRS-2 expression in the glucolipotoxicity induced INS-1 cell. The goal was to discover the new action mechanism and function of Exendin-4 in beta cell apoptosis. METHOD: INS-1 cells were cultured in glucolipotoxic condition for 2, 4 or 6 days and were categorized as G groups. Another group in which 50 nM Exendin-4 was added to INS-1 cells, cultured in glucolipotoxic condition, were named as Ex-4 groups. We investigated the expression of IRS-2 by RT-PCR, phosphorylated IRS-2 and phosphorylated Akt protein levels by western blot. We measured the apoptosis ratio of INS-1 cell in glucolipotoxic condition by TUNEL staining in both groups. RESULT: IRS-2 expression of INS-1 cells decreased with correlation to the time of exposure to glucolipotoxic condition. pIRS-2 and pAkt protein levels decreased in the similar pattern in glucolipotoxicity group. However, this effect of glucolipotoxicity on INS-1 cell was inhibited by the Exendin-4 treatment. In the Ex-4 groups, IRS-2 expression, pIRS-2 and pAkt protein levels remained at the similar level to low glucose condition state. Also, apoptosis induced by glucolipotoxicity was suppressed by Exendin-4 treatment significantly. CONCLUSION: We showed that the long-term treatment of Exendin-4 inhibited the apoptosis of beta cells significantly in glucolipotoxic condition and that this effect of Exendin-4 was related with IRS-2 and Akt among the beta cell's intracellular signal transduction pathway.


Subject(s)
Apoptosis , Blotting, Western , Cell Proliferation , Cells, Cultured , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glucose , In Situ Nick-End Labeling , Insulin Receptor Substrate Proteins , Peptides , Phosphorylation , Receptors, Glucagon , Signal Transduction , Venoms
SELECTION OF CITATIONS
SEARCH DETAIL